
Number Systems  
and

Number Representation



Goals of these Lectures

Help you learn (or refresh your memory) about:
• The binary, hexadecimal, and octal number systems
• Finite representation of unsigned integers
• Finite representation of signed integers
• Finite representation of rational numbers (if time)

Why?
• A power programmer must know number systems and data  

representation to fully understand C’s primitive data types
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Agenda

3

Number Systems (Lecture 1)

Finite representation of unsigned integers (Lecture 2)

Finite representation of signed integers (Lecture 3)

Finite representation of rational numbers (Lecture 4)



The Decimal Number System

Name
• “decem” (Latin) => ten

Characteristics
• Ten symbols
• 0 1 2 3 4 5 6 7 8 9

• Positional
• 2945 ≠ 2495
• 2945 = (2*103) + (9*102) + (4*101) + (5*100)

(Most) people use the decimal number system
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The Binary Number System

Name
• “binarius” (Latin) => two

Characteristics
• Two symbols
• 0 1

• Positional
• 1010B ≠ 1100B

Most (digital) computers use the binary number system

Terminology
• Bit: a binary digit
• Byte: (typically) 8 bits
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Decimal-Binary Equivalence
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Decimal Binary Decimal Binary
0 0 16 10000
1 1 17 10001
2 10 18 10010
3 11 19 10011
4 100 20 10100
5 101 21 10101
6 110 22 10110
7 111 23 10111
8 1000 24 11000
9 1001 25 11001
10 1010 26 11010
11 1011 27 11011
12 1100 28 11100
13 1101 29 11101
14 1110 30 11110
15 1111 31 11111

... ...



Decimal-Binary Conversion
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Binary to decimal: expand using positional notation

(1*25)+(0*24)+(0*23)+(1*22)+100101B =
=

(1*25)+(0*24)+(0*23)+(1*22)+(0*21)+(1*20)
32 + 0 + 0 + 4 + 0 + 1

= 37



Decimal-Binary Conversion
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Decimal to binary: do the reverse
• Determine largest power of 2 ≤ number; write template

• Fill in template

37 = (?*25)+(?*24)+(?*23)+(?*22)+(?*21)+(?*20)

37 = (1*25)+(0*24)+(0*23)+(1*22)+(0*21)+(1*20)
-32

5
-4
1 100101B
-1
0



Decimal-Binary Conversion

Decimal to binary shortcut
• Repeatedly divide by 2, consider remainder

37 / 2 = 18 R 1
18 / 2 = 9 R 0
9 / 2 = 4 R 1
4 / 2 = 2 R 0
2 / 2 = 1 R 0
1 / 2 = 0 R 1

Read from bottom  
to top: 100101B
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The Hexadecimal Number System

Name
• “hexa” (Greek) => six
• “decem” (Latin) => ten

Characteristics
• Sixteen symbols

• 0 1 2 3 4 5 6 7 8 9 A B C D E F

• Positional
• A13DH ≠ 3DA1H

Computer programmers often use the hexadecimal number
system
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Decimal-Hexadecimal Equivalence
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Decimal Hex Decimal Hex Decimal Hex
0 0 16 10 32 20
1 1 17 11 33 21
2 2 18 12 34 22
3 3 19 13 35 23
4 4 20 14 36 24
5 5 21 15 37 25
6 6 22 16 38 26
7 7 23 17 39 27
8 8 24 18 40 28
9 9 25 19 41 29
10 A 26 1A 42 2A
11 B 27 1B 43 2B
12 C 28 1C 44 2C
13 D 29 1D 45 2D
14 E 30 1E 46 2E
15 F 31 1F 47 2F

... ...



Decimal-Hexadecimal Conversion

Hexadecimal to decimal: expand using positional notation

Decimal to hexadecimal: use the shortcut

25H = (2*161) +
= 32 +

(5*160)   
5

= 37

37 / 16 = 2 R 5
2 / 16 = 0 R 2

Read from bottom  
to top: 25H
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Binary-Hexadecimal Conversion

Observation: 161 = 24

• Every 1 hexadecimal digit corresponds to 4 binary digits

Binary to hexadecimal

1010000100111101B  
A 1 3 DH

Digit count in binary number  
not a multiple of 4 =>
pad with zeros on left

Hexadecimal to binary

A 1 3 DH 
1010000100111101B

Discard leading zeros
from binary number if
appropriate
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The Octal Number System

Name
• “octo” (Latin) => eight

Characteristics
• Eight symbols

• 0 1 2 3 4 5 6 7
• Positional

• 1743O ≠ 7314O

Computer programmers often use the octal number system
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Decimal-Octal Equivalence
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Decimal Octal Decimal Octal Decimal Octal
0 0 16 20 32 40
1 1 17 21 33 41
2 2 18 22 34 42
3 3 19 23 35 43
4 4 20 24 36 44
5 5 21 25 37 45
6 6 22 26 38 46
7 7 23 27 39 47
8 10 24 30 40 50
9 11 25 31 41 51
10 12 26 32 42 52
11 13 27 33 43 53
12 14 28 34 44 54
13 15 29 35 45 55
14 16 30 36 46 56
15 17 31 37 47 57

... ...



Decimal-Octal Conversion

Octal to decimal: expand using positional notation

Decimal to octal: use the shortcut

37O = (3*81) + (7*80)
= 24 + 7
= 31

31 / 8 = 3 R 7
3 / 8 = 0 R 3

Read from bottom  
to top: 37O
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Binary-Octal Conversion

Observation: 81 = 23

• Every 1 octal digit corresponds to 3 binary digits

Binary to octal

001010000100111101B
1 2 0 4 7 5O

Digit count in binary number  
not a multiple of 3 =>
pad with zeros on left

Discard leading zeros
from binary number if
appropriate

Octal to binary

1 2 0 4 7 5O
001010000100111101B
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Agenda

18

Number Systems (Lecture 1)

Finite representation of unsigned integers (Lecture 2)

Finite representation of signed integers (Lecture 3)

Finite representation of rational numbers (Lecture 4)



Bitwise Operations



BitwiseAND

• Similar to logical AND (&&),except it  works on a bit-by-bit
manner

• Denoted by a single ampersand:&

(1001 &
0101)=
0001



Bitwise OR

• Similar to logical OR (||), except it works on a bit-by-bit
manner

• Denoted by a single pipe character:|

(1001 |
0101)=
1101



Bitwise XOR

• Exclusive OR,denoted by a carat:^

• Similar to bitwise OR, except that if both inputs are 1 or 0 
then the result is 0

(1001 ^
0101)=
1100



Bitwise NOT

• Similar to logical NOT (!), except it works on a bit-by-bit
manner

• Denoted by a tilde character:~

~1001 =  
0110



AND (&) Operation:
X & 0 = 0 & X = 0
X & 1 = 1 & X = X
X & X = X

OR (|) Operation:
X | 1 = 1 | X = 1
X | 0 = 0 | X = X
X | X = X

XOR (^) Operation:

X ^ 1 = 1 ^ X = ~X
X ^ 0 = 0 ^ X = X
X ^ X = 0

BitwiseOperations as Masks

X: it is an unknown binary number and can be either 0 or 1



Specify the mask you would need to isolate bit 0 of the unknown number. The result 
of the operation should be 0 (0x0000) if bit 0 is 0, and non-zero if bit 0 is 1. Express it 
as a 4-digit hexadecimal number.
Answer: 
We know that 1 hexadecimal digit = 4 bits in binary

15…                …… 3 2 1 0      Bit position
XXXX  XXXX XXXX XXXX  Unknown number

Operation --> ?    ????   ????   ????  ????      Mask
--------------------------------------

if bit 0 is 0   0000  0000  0000  0000     zero (0x0000)
if bit 0 is 1   0000  0000  0000   0001    nonzero (0x0001)

In this case, we can use AND operation (&) and then the mask(16 bits) will be as
0000  0000  0000  0001  => 0001 in hexadecimal   

Therefore, the answer is answer & as the operation and 0x0001 as the mask.

Mask Example



Specify the mask you would need to set bit 1 of the unknown number to zero. That is, 
the result of this operation results in a new number, which the unknown number will be 
subsequently set to. Express it as a 4-digit hexadecimal number.

Answer: 
We know that 1 hexadecimal digit = 4 bits in binary

15…                …… 3 2 1 0      Bit position
XXXX  XXXX XXXX XXXX  Unknown number

Operation --> ?    ????   ????   ????  ????      Mask
--------------------------------------

XXXX  XXXX XXXX XX0X

In this case, we can use AND operation (&) and then the mask(16 bits) will be as
1111  1111  1111  1101  => FFFD in hexadecimal   

Therefore, the answer is & as the operation and 0xFFFD as the mask.

Mask Example



Unsigned Data Types: Java vs. C
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Java has type
• int

• Can represent signed integers

C has type:
• signed int

• Can represent signed integers
• int

• Same as signed int
• unsigned int

• Can represent only unsigned integers

To understand C, must consider representation of both  
unsigned and signed integers



Representing Unsigned Integers

28

Mathematics
• Range is 0 to ∞

Computer programming
• Range limited by computer’s word size
• Word size is n bits => range is 0 to 2n – 1
• Exceed range => overflow

Nobel computers with gcc217
• n = 32, so range is 0 to 232 – 1 (4,294,967,295)

Pretend computer
• n = 4, so range is 0 to 24 – 1 (15)

Hereafter, assume word size = 4
• All points generalize to word size = 32, word size = n



Representing Unsigned Integers
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On pretend computer Unsigned 
Integer Rep

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111



Adding Unsigned Integers

Addition

Results are mod 24

7
+ 10

11
0111B

+ 1010B

1 10001B

1
3 0011B

+ 10
--

+ 1010B
----

13 1101B

Start at right column  
Proceed leftward
Carry 1 when necessary

Beware of overflow
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Subtracting Unsigned Integers

Subtraction

3
- 10

2
0011B

- 1010B

9 1001B

Results are mod 24

10
- 7

12
0202
1010B

- 0111B

3 0011B

Start at right column  
Proceed leftward
Borrow 2 when necessary

Beware of overflow
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Shift Left

• Move all the bits N positions to the left, subbing in N 0s
on the right



Shift Left

1001

• Move all the bits N positions to the left, subbing in N 0s
on the right



Shift Left

1001 << 2 =
100100

• Move all the bits N positions to the left, subbing in N 0s
on the right



Shift Left

• Useful as a restricted form of multiplication

• Question:how?

1001 << 2 =
100100



Shift Left as Multiplication

• Equivalent decimal operation:

234
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• Equivalent decimal operation:

234 << 1 =
2340

Shift Left as Multiplication
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• Equivalent decimal operation:

234 << 1 =
2340

234 << 2 =
23400

Shift Left as Multiplication
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Multiplication

• Shifting left N positions multiplies by(base)N

• Multiplying by 2 or 4 is often necessary (shift left 1 or 2 
positions,respectively)

• Often a whooole lot faster than telling the processor to
multiply

234 << 2 =
23400
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Shift Right

• Move all the bits N positions to the right, subbing in either
N 0s or N 1s on the left

• Two different forms



Shift Right

• Move all the bits N positions to the right, subbing in either
N 0s or N (whatever the leftmost bit is)s on the left

• Two different forms
1001 >> 2 =
either 0010 or 1110



Shift Right as Division

• Question: If shifting left multiplies,what does shift right do?

• Answer: divides in a similar way, but truncates result
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Shift Right as Division

• Question: If shifting left multiplies,what does shift right do?

• Answer: divides in a similar way, but truncates result

234
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Shift Right as Division

• Question: If shifting left multiplies,what does shift right do?

• Answer: divides in a similar way, but truncates result

234 >> 1 =
23
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Shifting Unsigned Integers

Results are mod 24

5 << 1 => 10

3 << 2 => 12

Bitwise right shift (>>): fill on left with zeros

What is the effect  
arithmetically? (No  
fair looking ahead)

Bitwise left shift (<<): fill on right with zeros

What is the effect  
arithmetically? (No  
fair looking ahead)
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10 >> 1 => 5

1010B 0101B

10 >> 2 => 2

1010B 0010B

0101B 1010B

0011B 1100B



Other Operations on Unsigned Ints

Bitwise NOT (~)
• Flip each bit

~10 => 5

10
& 7
--
2
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1010B  
& 0111B
----
0010B

Useful for setting  
selected bits to 0

1010B 0101B

Bitwise AND (&)                            
• Logical AND corresponding bits



Other Operations on Unsigned Ints

Bitwise OR: (|)
• Logical OR corresponding bits

Bitwise exclusive OR (^)
• Logical exclusive OR corresponding bits

10
| 1

--
11

1010B
| 0001B
----
1011B

Useful for setting  
selected bits to 1

10
^ 10
--
0
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1010B
^ 1010B
----
0000B

x ^ x sets  
all bits to 0

The binary XOR operation will always produce a 1 output if either of its inputs is 
1 and will produce a 0 output if both of its inputs are 0 or 1. 



Aside: Using Bitwise Ops for Arith

Can use <<, >>, and & to do some arithmetic efficiently

x * 2y == x << y
• 3*4 = 3*22 = 3 << 2 => 12

x / 2y == x >> y
• 13/4 = 13/22 = 13 >> 2 => 3

x % 2y == x & (2y-1)
• 13%4 = 13%22 = 13&(22-1)
= 13&3 => 1

Fast way to multiply
by a power of 2

Fast way to divide
by a power of 2

Fast way to mod
by a power of 2
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13
& 3

1101B  
& 0011B

1 0001B

0011B 1100B

1101B 0011B



Two Forms of Shift Right

• Subbing in 0s makes sense

• What about subbing in the leftmost bit?

• And why is this called “arithmetic” shift right?

1100 (arithmetic)>> 1 =
1110



Answer... Sort of

• Arithmetic form is intended for numbers in two's complement

(next lecture), whereas the non-arithmetic form is intended 

for unsigned numbers



Agenda
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Number Systems (Lecture 1)

Finite representation of unsigned integers (Lecture 2)

Finite representation of signed integers (Lecture 3)

Finite representation of rational numbers (Lecture 4)



Signed Magnitude
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Integer Rep
-7 1111
-6 1110
-5 1101
-4 1100
-3 1011
-2 1010
-1 1001
-0 1000
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Definition
High-order bit indicates sign  

0 => positive
1 => negative

Remaining bits indicate magnitude

B B1101 = -101 = -5
0101B = 101B = 5



Signed Magnitude (cont.)

Integer Rep
-7 1111
-6 1110
-5 1101
-4 1100
-3 1011
-2 1010
-1 1001
-0 1000
0 0000
1 0001
2 0010
3 0011
4
5
6
7

0100
0101
0110
0111
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Computing negative
neg(x) = flip high order bit of x  

neg(0101B) = 1101B  
neg(1101B) = 0101B

Pros and cons
+ easy for people to understand
+ symmetric
- two reps of zero
- one of the bit patterns is wasted. 
- addition doesn't work the way we want it to.



Signed Magnitude (cont.)
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Problem #1: "The Case of the Missing Bit Pattern": 

How many possible bit patterns can be created with 4 bits? 

Easy, we know that's 16. In unsigned representation, we were able to represent 

16 numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15. 

But with signed magnitude, we are only able to represent 15 numbers: -7, -6, -5, 

-4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, and 7. 

There's still 16 bit patterns, but one of them is either not being used or is 

duplicating a number. That bit pattern is '1000B’. 

When we interpret this pattern, we get '-0' which is both nonsensical (negative 

zero? come on!) and redundant (we already have '0000B' to represent 0).



Signed Magnitude (cont.)
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Problem #2: "Requires Special Care and Feeding": Remember we wanted to   

have negative binary numbers so we could use our binary addition algorithm to 

simulate binary subtraction. How does signed magnitude fare with addition? To

test it, let's try subtracting 2 from 5 by adding 5 and -2. A positive 5 would be 

represented with the bit pattern '0101B' and -2 with '1010B'. Let's add  these two 

numbers and see what the result is:   
0101

+1010
----------

1111

Now we interpret the result as a signed magnitude number. The sign is ‘1’

(negative) and the magnitude is '7'. So the answer is a negative 7. But, wait a 

minute, 5-2=3! This obviously didn't work. 

Conclusion: signed magnitude doesn't work with regular binary addition algorithms. 



One's Complement

Integer Rep
-7 1000
-6 1001
-5 1010
-4 1011
-3 1100
-2 1101
-1 1110
-0 1111
0 0000
1 0001
2 0010
3 0011
4
5
6
7

0100
0101
0110
0111
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Definition
High-order bit has weight -7 (- 2n + 1 )

B

0010B

1010 = (1*-7)+(0*4)+(1*2)+(0*1)
= -5
= (0*-7)+(0*4)+(1*2)+(0*1)
= 2



One's Complement (cont.)

7 0111
- two reps of zero 57

Integer Rep
-7 1000
-6 1001
-5 1010
-4 1011
-3 1100
-2 1101
-1 1110
-0 1111
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110

Computing negative
neg(x) = ~x

neg(0101 ) = 1010B B

Pros and cons
+ symmetric

neg(1010B) = 0101B

Computing negative (alternative)
neg(x) = 1111B - x

neg(0101 ) = 1111 – 0101B B B
= 1010B

neg(1010B) = 1111B – 1010B
= 0101B



Two’s Complement
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Integer Rep
-8 1000
-7 1001
-6 1010
-5 1011
-4 1100
-3 1101
-2 1110
-1 1111
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Definition
High-order bit has weight -8 (-2n)

B

0010B

1010 = (1*-8)+(0*4)+(1*2)+(0*1)
= -6
= (0*-8)+(0*4)+(1*2)+(0*1)
= 2



Two’s Complement (cont.)
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Integer Rep
-8 1000
-7 1001
-6 1010
-5 1011
-4 1100
-3 1101
-2 1110
-1 1111
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Computing negative
neg(x) = ~x + 1
neg(x) = onescomp(x) + 1

neg(0101B) = 1010B + 1 = 1011B
neg(1011B) = 0100B + 1 = 0101B

Pros and cons
- not symmetric
+ one rep of zero



Two’s Complement (cont.)
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Almost all computers use two’s complement to represent  
signed integers

Why?
• Arithmetic is easy
• Will become clear soon

Hereafter, assume two’s complement representation of
signed integers



Two's Complement

• Way to represent positive integers, negative integers, and zero

• If 1 is in the most significant bit (generally leftmost bit in this
class),then it is negative



Decimal toTwo's  Complement

• Example: -5 decimal to binary (twos complement)

http://sandbox.mc.edu/~bennet/cs110/tc/dtotc.html



Decimal toTwo's  Complement

• Example:-5 decimal to binary (twos complement)

• First, convert the magnitude to an unsigned representation



• Example:-5 decimal to binary (two's complement)

• First, convert the magnitude to an unsigned representation

5 (decimal) = 0101 (binary)

Decimal toTwo's  Complement



• Then, take the bits, and negate them

Decimal toTwo's  Complement



• Then, take the bits, and negate them

0101

Decimal toTwo's  Complement



• Then, take the bits, and negate them

~0101 =  
1010

Decimal toTwo's  Complement



• Finally, add one:

Decimal toTwo's  Complement



• Finally, add one:

1010

Decimal toTwo's  Complement



• Finally, add one:
1010 + 1 =
1011

Decimal toTwo's  Complement



• Same operation: negate the bits, and add one

Two’s  Complement to Decimal



• Same operation: negate the bits, and add one

1011

Two’s  Complement to Decimal



• Same operation: negate the bits, and add one

~1011 =  
0100

Two’s  Complement to Decimal



• Same operation: negate the bits, and add one

0100

Two’s  Complement to Decimal



• Same operation: negate the bits, and add one
0100 + 1 =
0101

Two’s  Complement to Decimal



• Same operation: negate the bits, and add one

0100 + 1 =
0101 =
-5

We started with
1011 - negative

Two’s  Complement to Decimal



Addition

http://sandbox.mc.edu/~bennet/cs110/textbook/module3_2.html



Building UpAddition

• Question: how might we add the following, in decimal?

986
+123
----

?



• Question: how might we add the following, in decimal?

Building UpAddition

986
+123
----

?

6
+3
--
?



• Question: how might we add the following, in decimal?

6
+3
--
9

8
+2
--
?

Building UpAddition

986
+123
----

?



Building UpAddition

6
+3
--
9

8
+2
--
0

Carry:1

• Question: how might we add the following, in decimal?

986
+123
----

?



Building UpAddition

6
+3
--
9

8
+2
--
0

1
9

+1
--
?

• Question: how might we add the following, in decimal?

986
+123
----

?



Building UpAddition

6
+3
--
9

8
+2
--
0

1
9

+1
--
1

Carry:1

• Question: how might we add the following, in decimal?

986
+123
----

?



Building UpAddition

6
+3
--
9

8
+2
--
0

1
9

+1
--
1

1
+0
--
1

• Question: how might we add the following, in decimal?

986
+123
----

?



Core Concepts

• We have a “primitive” notion of adding single digits, along 
with an idea of carrying digits

• We can build on this notion to add numbers together that 
are more than one digit long









Adding Multiple Bits

• How might we add the numbers below?

011
+001

------



Adding Multiple Bits

• How might we add the numbers below?

0
011

+001
------



Adding Multiple Bits

------
0

• How might we add the numbers below?

10
011

+001



Adding Multiple Bits

------
00

• How might we add the numbers below?

110
011

+001



Adding Multiple Bits

------
100

• How might we add the numbers below?

0110
011

+001



Adding Multiple Bits

------
100

• How might we add the numbers below?

0110
011

+001

Output Carry Bit Result Bits



Another Example

111
+001

------



Another Example

0
111

+001
------



Another Example

------
0

10
111

+001



Another Example

------
00

110
111

+001



Another Example

------
000

1110
111

+001

Output Carry Bit Result Bits



Output Carry Bit Significance

• For unsigned numbers, it indicates if the result did not fit all
the way into the number of bits allotted

• May be an error condition for software



Signed Addition

• Question: what isthe result of the following operation?

011
+011
----

?



Signed Addition

• Question:what is the result of the following operation?

011
+011
----
0110



Overflow

• In this situation, overflow occurred: this means that both the

operands had the same sign, and the result’s sign differed

• Possibly a software error

011
+011
----
110



Overflow vs.Carry

• These are different ideas

• Carry is relevant to unsigned values

• Overflow is relevant to signed values



Adding Signed Integers

3
+ 3

11
0011B

+ 0011B
7

+ 1

111
0111B

+ 0001B

-8 1000B

pos + pos pos + pos (overflow)

3
+ -1

1111
0011B

+ 1111B

6 0110B

pos + neg

-3
+ -2

11
1101B

+ 1110B

-5 11011B

2 10010B

neg + neg

-6
+ -5

1 1
1010B

+ 1011B

5 10101B

neg + neg (overflow)



Subtracting Signed Integers

1
22

3 0011B 3 0011B
- 4 - 0100B + -4 + 1100B

-1 1111B -1 1111B

111
-5 1011B -5 1011
- 2 - 0010B + -2 + 1110

-7 1001B -7 11001

Perform subtraction  
with borrows

Compute two’s comp  
and addor



Shifting Signed Integers
Bitwise (logical/arithmetic) left shift (<<): fill on right with zeros

Bitwise arithmetic right shift: fill on left with sign bit

Results are mod 24

6 >> 1 => 3

-6 >> 1 => -3

3 << 1 => 6

-3 << 1 => -6

0011B 0110B

1101B 1010B

0110B 0011B

1010B 1101B

Shift by n = 
multiplying by 2n

Shift by n = dividing by 2n

and Round-floor



Shifting Signed Integers (cont.)

Bitwise logical right shift: fill on left with zeros

Right shift (>>) could be logical or arithmetic
• Compiler designer decides
• Logical shift is ideal for unsigned binary numbers
• Arithmetic shift is ideal for signed two’s complement binary numbers

6 >> 1 => 3

-6 >> 1 => 5

0110B 0011B

1010B 0101B
?



Other Operations on Signed Ints

Bitwise NOT (~)
• Same as with unsigned ints

Bitwise AND (&)
• Same as with unsigned ints

Bitwise OR: (|)
• Same as with unsigned ints

Bitwise exclusive OR (^)
• Same as with unsigned ints



Agenda

Number Systems (Lecture 1)

Finite representation of unsigned integers (Lecture 2)

Finite representation of signed integers (Lecture 3)

Finite representation of rational numbers (Lecture 4)



Number Systems

• So far, we have studied the following integer number 
systems in computer
 Unsigned numbers

 Sign/magnitude numbers

 Two’s complement numbers

• What about rational numbers?

 A rational number is one that can be expressed as the ratio of 
two integers

 Infinite range and precision
 For example, 2.5, -10.04, 0.75 etc



Rational Numbers

Computer science
• Finite range and precision
• Approximate using floating point number

• Binary point “floats” across bits

• Two common notations to represent rational numbers 
in computer
 Fixed-point numbers

 Floating-point numbers



Fixed-Point Numbers

• Fixed point notation has an implied binary point between the 
integer and fraction bits
 The binary point is not a part of the representation but is implied
 Example: 

• Fixed-point representation of 6.75 using 4 integer bits and 4 fraction bits:

• The number of integer and fraction bits must be agreed upon 
by those generating and those reading the number
 There is no way of knowing the existence of the binary point except 

through agreement of those people interpreting the number

01101100

0110.1100

22 + 21 + 2-1 + 2-2 = 6.75



Signed Fixed-Point Numbers

• As with whole numbers, negative fractional numbers can be represented 
in two ways
 Sign/magnitude notation
 Two’s complement notation

• Example: 
 -2.375 using 8 bits (4 bits each to represent integer and fractional parts)

• 2.375 = 0010 . 0110
• Sign/magnitude notation: 1010  0110
• Two’s complement notation: 

1. flip all the bits:     1101  1001
2. add 1:                 +            1

1101  1010

• Addition and subtraction works easily in computer with 2’s complement 
notation like integer addition and subtraction



Example

• Suppose that we have 8 bits to represent a number
 4 bits for integer and 4 bits for fraction

• Compute 0.75  + (-0.625)
 0.75   =  0000   1100
 0.625 =  0000   1010

 -0.625 in 2’s complement form: 1111   0110

0.75        0000   1100
+ - 0.625       1111   0110

0000   00100.125 



Fixed-Point Number Systems

• Fixed-point number systems have a limitation of having a 
constant number of integer and fractional bits

• Some low-end digital signal processors support fixed-point 
numbers
 Example: TMS320C550x TI (Texas Instruments) DSPs: www.ti.com



Floating-Point Numbers

• Floating-point number systems circumvent the limitation of having a 
constant number of integer and fractional bits
 They allow the representation of very large and very small numbers

• The binary point floats to the right of the most significant 1
 Similar to decimal scientific notation
 For example, write 27310 in scientific notation:

• Move the decimal point to the right of the most significant digit and increase the exponent:

273 = 2.73 × 102

• In general, a number is written in scientific notation as:
± M × BE

Where, 
 M = mantissa
 B = base
 E = exponent
 In the example, M = 2.73, B = 10, and E = 2 (that is, +2.73 × 102)



Floating-Point Numbers

• Floating-point number representation using 32 bits
 1 sign bit
 8 exponent bits
 23 bits for the mantissa.

• The following slides show three versions of floating-
point representation with 22810 using a 32-bit
 The final version is called the IEEE 754 floating-point standard

Sign Exponent Mantissa

1 bit 8 bits 23 bits



Floating-Point Representation #1

• First, convert the decimal number to binary

 22810 = 111001002 = 1.11001 × 27

• Next, fill in each field in the 32-bit:

 The sign bit (1 bit) is positive, so 0

 The exponent (8 bits) is 7 (111)

 The mantissa (23 bits) is 1.11001

0 00000111     11 1001 0000 0000 0000 0000
Sign Exponent Mantissa

1 bit 8 bits 23 bits

/ Fraction



Floating-Point Representation #2

• You may have noticed that the first bit of the mantissa is always 1, since
the binary point floats to the right of the most significant 1

 Example: 22810 = 111001002 = 1.11001 × 27

• Thus, storing the most significant 1 (also called the implicit leading 1) is
redundant information

• We can store just the fraction parts in the 23-bit field

 Now, the leading 1 is implied

0 00000011     110 0100 0000 0000 0000 0000
Sign Exponent Fraction

1 bit 8 bits 23 bits
0 0 0 0 0 1 1 1

Mantissa /



Floating-Point Representation #3

• The exponent needs to represent both positive and negative

• The final change is to use a biased exponent

 The IEEE 754 standard uses a bias of 127

 Biased exponent = bias + exponent

• For example, an exponent of 7 is stored as 127 + 7 = 134 = 100001102

• Thus , 22810 using the IEEE 754 32-bit floating-point standard is

0 10000110
Sign Biased

Exponent
Fraction

1 bit 8 bits 23 bits
    110 0100 0000 0000 0000 0000

Most general purpose processors (including Intel and AMD processors) provide hardware 
support for double-precision floating-point numbers and operations

Mantissa /

22810 = 111001002 = 1.11001 × 27



IEEE Floating Point Representation

Common finite representation: IEEE floating point
• More precisely: ISO/IEEE 754 standard

Using 32 bits (type float in C):
• 1 bit: sign (0=>positive, 1=>negative)
• 8 bits: exponent + 127
• 23 bits: binary fraction of the form 1.ddddddddddddddddddddddd

Using 64 bits (type double in C):
• 1 bit: sign (0=>positive, 1=>negative)
• 11 bits: exponent + 1023
• 52 bits: binary fraction of the form  

1.dddddddddddddddddddddddddddddddddddddddddddddddddddd

0 10000001     001 1000 0000 0000 0000 0000
Sign Exponent Fraction

1 bit 8 bits 23 bits

Mantissa /



Example

• Represent -5810 using the IEEE 754 floating-point standard
 First, convert the decimal number to binary

• 5810 = 1110102 = 1.1101 × 25

 Next, fill in each field in the 32-bit number

• The sign bit is negative (1)

• The 8 exponent bits are (127 + 5) = 132 = 10000100(2)

• The remaining 23 bits are the fraction bits: 11010000...000(2)

 It is 0xC2680000 in the hexadecimal form

Check this out with the result of the sample program in the slide# 3

1 10000100     110 1000 0000 0000 0000 0000
Sign Exponent Fraction

1 bit 8 bits 23 bits



Double Precision Example

• Represent -5810 using the IEEE 754 double precision
 First, convert the decimal number to binary

• 5810 = 1110102 = 1.1101 × 25

 Next, fill in each field in the 64-bit number

• The sign bit is negative (1)

• The 11 exponent bits are (1023 + 5) = 1028 = 10000000100(2)

• The remaining 52 bits are the fraction bits: 11010000...000(2)

 It is 0xC04D000000000000 in the hexadecimal form



Floating-Point Numbers: Special Cases

• The IEEE 754 standard includes special cases for numbers that are 
difficult to represent, such as 0 because it lacks an implicit leading 1

Number Sign Exponent Fraction

0 X 00000000 00000000000000000000000

∞ 0 11111111 00000000000000000000000

- ∞ 1 11111111 00000000000000000000000

NaN X 11111111 non-zero

NaN is used for numbers that don’t exist, such as √-1 or log(-5)



Floating Point Example

Sign (1 bit):
• 1 => negative

Exponent (8 bits):
• 10000011B = 131
• 131 – 127 = 4

Fraction (23 bits):
• 1.10110110000000000000000B
• 1 +
(1*2-1)+(0*2-2)+(1*2-3)+(1*2-4)+(0*2-5)+(1*2-6)+(1*2-7)
= 1.7109375

Number:
• -1.7109375 * 24 = -27.375

11000001110110110000000000000000

32-bit representation



Floating Point Example

2632
1312
652
322
162
82
42
22
12
0

1
1
1
0
0
0
0
0
1

263: 100000111

0.3 * 2 0.6 0

0.6 * 2 1.2 1

0.2 * 2 0.4 0

0.4 * 2 0.8 0

0.8 * 2 1.6 1

0.6 * 2 1.2 1

0

0

1

1

0

0.3 : 01001100110011….

263.3

Stop when it gets 1.0

IEEE754 floating-point standard can’t represent 
some numbers exactly



Floating Point Example

0100 0011 1000 0011 1010 0110 0110 0110

32-bit representation

1) 263.3
100000111.0100110011…

2) Scientific notation:
1.000001110100110011… * 28

Mantissa

Sign (1 bit):
• positive => 0

Exponent (8 bits):
• 127 + 8 = 135

• 135 = 10000111B

Fraction (23 bits):
• 00000111010011001100110



Binary Coded Decimal (BCD)

• Since floating-point number systems can’t represent some numbers exactly 
such as 0.3, some application (calculators) use BCD (Binary coded decimal)
 BCD numbers encode each decimal digit using 4 bits with a range of 0 to 9

BCD fixed-point notation examples
1.7 = 0001 . 0111
4.9 = 0100 . 1001

• BCD is very common in electronic systems where a numeric value is to be 
displayed, especially, in systems consisting solely of digital logic (not containing 
a microprocessor) - Wiki

Decimal BCD Digit

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

6.75 = 0110.01110101



Examples

1- Convert Decimal to Floating Point (IEEE 754)
https://www.youtube.com/watch?v=8afbTaA-gOQ

2- Convert Floating Point (IEEE 754) to Decimal
https://www.youtube.com/watch?v=LXF-wcoeT0o



Converting Between Decimal and Binary 
Floating-Point Numbers

https://mebrahimii.github.io/comp122-summer2021/lecture/week_2/floating_point_interconversions.html



Summary

The binary, hexadecimal, and octal number systems  

Finite representation of unsigned integers

Finite representation of signed integers  

Finite representation of rational numbers

Essential for proper understanding of
• C primitive data types
• Assembly language
• Machine language
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Floating-Point Numbers: Rounding

• Arithmetic results that fall outside of the available precision 
must round to a neighboring number

• Rounding modes
 Round down
 Round up
 Round toward zero
 Round to nearest

• Example
 Round 1.100101 (1.578125) so that it uses only 3 fraction bits

• Round down: 1.100
• Round up: 1.101
• Round toward zero: 1.100
• Round to nearest:               1.101 

 1.625 is closer to 1.578125 than 1.5 is
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Floating-Point Addition with the Same Sign

• Addition with floating-point numbers is not as simple as addition 
with 2’s complement numbers

• The steps for adding floating-point numbers with the same sign 
are as follows
1. Extract exponent and fraction bits
2. Prepend leading 1 to form mantissa
3. Compare exponents
4. Shift smaller mantissa if necessary
5. Add mantissas
6. Normalize mantissa and adjust exponent if necessary
7. Round result
8. Assemble exponent and fraction back into floating-point format

135



Floating-Point Addition Example
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Add the following floating-point numbers:

1.5  + 3.25

1.5(10) = 1.1(2) x 20

3.25(10) = 11.01(2) = 1.101(2) x 21

1.1(10) = 0x3FC00000 in IEEE 754 single precision
3.25(10) = 0x40500000 in IEEE 754 single precision



Floating-Point Addition Example
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1. Extract exponent and fraction bits

For first number (N1): S = 0, E = 127, F = .1
For second number (N2): S = 0, E = 128, F = .101

2. Prepend leading 1 to form mantissa
N1:   1.1
N2:   1.101

0 01111111     100 0000 0000 0000 0000 0000
Sign Exponent Fraction

1 bit 8 bits 23 bits

0 10000000     101 0000 0000 0000 0000 0000

1 bit 8 bits 23 bits

Sign Exponent Fraction



Floating-Point Addition Example
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3. Compare exponents
127 – 128 = -1, so shift N1 right by 1 bit

4. Shift smaller mantissa if necessary
shift N1’s mantissa: 1.1 >> 1 = 0.11  (× 21)

5. Add mantissas
0.11   × 21

+ 1.101 × 21

10.011 × 21



Floating-Point Addition Example
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6. Normalize mantissa and adjust exponent if necessary
10.011 × 21 = 1.0011 × 22

7. Round result
No need (fits in 23 bits)

8. Assemble exponent and fraction back into floating-point 
format

S = 0, E = 2 + 127 = 129 = 100000012, F = 001100..

4.75(10) = 0x40980000 in the hexadecimal form 

0 10000001     001 1000 0000 0000 0000 0000
Sign Exponent Fraction

1 bit 8 bits 23 bits


