
Number Systems
and

Number Representation

Goals of these Lectures

Help you learn (or refresh your memory) about:
• The binary, hexadecimal, and octal number systems
• Finite representation of unsigned integers
• Finite representation of signed integers
• Finite representation of rational numbers (if time)

Why?
• A power programmer must know number systems and data

representation to fully understand C’s primitive data types

2

Agenda

3

Number Systems (Lecture 1)

Finite representation of unsigned integers (Lecture 2)

Finite representation of signed integers (Lecture 3)

Finite representation of rational numbers (Lecture 4)

The Decimal Number System

Name
• “decem” (Latin) => ten

Characteristics
• Ten symbols
• 0 1 2 3 4 5 6 7 8 9

• Positional
• 2945 ≠ 2495
• 2945 = (2*103) + (9*102) + (4*101) + (5*100)

(Most) people use the decimal number system

4

The Binary Number System

Name
• “binarius” (Latin) => two

Characteristics
• Two symbols
• 0 1

• Positional
• 1010B ≠ 1100B

Most (digital) computers use the binary number system

Terminology
• Bit: a binary digit
• Byte: (typically) 8 bits

5

Decimal-Binary Equivalence

6

Decimal Binary Decimal Binary
0 0 16 10000
1 1 17 10001
2 10 18 10010
3 11 19 10011
4 100 20 10100
5 101 21 10101
6 110 22 10110
7 111 23 10111
8 1000 24 11000
9 1001 25 11001
10 1010 26 11010
11 1011 27 11011
12 1100 28 11100
13 1101 29 11101
14 1110 30 11110
15 1111 31 11111

... ...

Decimal-Binary Conversion

7

Binary to decimal: expand using positional notation

(1*25)+(0*24)+(0*23)+(1*22)+100101B =
=

(1*25)+(0*24)+(0*23)+(1*22)+(0*21)+(1*20)
32 + 0 + 0 + 4 + 0 + 1

= 37

Decimal-Binary Conversion

8

Decimal to binary: do the reverse
• Determine largest power of 2 ≤ number; write template

• Fill in template

37 = (?*25)+(?*24)+(?*23)+(?*22)+(?*21)+(?*20)

37 = (1*25)+(0*24)+(0*23)+(1*22)+(0*21)+(1*20)
-32

5
-4
1 100101B
-1
0

Decimal-Binary Conversion

Decimal to binary shortcut
• Repeatedly divide by 2, consider remainder

37 / 2 = 18 R 1
18 / 2 = 9 R 0
9 / 2 = 4 R 1
4 / 2 = 2 R 0
2 / 2 = 1 R 0
1 / 2 = 0 R 1

Read from bottom
to top: 100101B

9

The Hexadecimal Number System

Name
• “hexa” (Greek) => six
• “decem” (Latin) => ten

Characteristics
• Sixteen symbols

• 0 1 2 3 4 5 6 7 8 9 A B C D E F

• Positional
• A13DH ≠ 3DA1H

Computer programmers often use the hexadecimal number
system

10

Decimal-Hexadecimal Equivalence

11

Decimal Hex Decimal Hex Decimal Hex
0 0 16 10 32 20
1 1 17 11 33 21
2 2 18 12 34 22
3 3 19 13 35 23
4 4 20 14 36 24
5 5 21 15 37 25
6 6 22 16 38 26
7 7 23 17 39 27
8 8 24 18 40 28
9 9 25 19 41 29
10 A 26 1A 42 2A
11 B 27 1B 43 2B
12 C 28 1C 44 2C
13 D 29 1D 45 2D
14 E 30 1E 46 2E
15 F 31 1F 47 2F

... ...

Decimal-Hexadecimal Conversion

Hexadecimal to decimal: expand using positional notation

Decimal to hexadecimal: use the shortcut

25H = (2*161) +
= 32 +

(5*160)
5

= 37

37 / 16 = 2 R 5
2 / 16 = 0 R 2

Read from bottom
to top: 25H

12

Binary-Hexadecimal Conversion

Observation: 161 = 24

• Every 1 hexadecimal digit corresponds to 4 binary digits

Binary to hexadecimal

1010000100111101B
A 1 3 DH

Digit count in binary number
not a multiple of 4 =>
pad with zeros on left

Hexadecimal to binary

A 1 3 DH
1010000100111101B

Discard leading zeros
from binary number if
appropriate

13

The Octal Number System

Name
• “octo” (Latin) => eight

Characteristics
• Eight symbols

• 0 1 2 3 4 5 6 7
• Positional

• 1743O ≠ 7314O

Computer programmers often use the octal number system

14

Decimal-Octal Equivalence

15

Decimal Octal Decimal Octal Decimal Octal
0 0 16 20 32 40
1 1 17 21 33 41
2 2 18 22 34 42
3 3 19 23 35 43
4 4 20 24 36 44
5 5 21 25 37 45
6 6 22 26 38 46
7 7 23 27 39 47
8 10 24 30 40 50
9 11 25 31 41 51
10 12 26 32 42 52
11 13 27 33 43 53
12 14 28 34 44 54
13 15 29 35 45 55
14 16 30 36 46 56
15 17 31 37 47 57

... ...

Decimal-Octal Conversion

Octal to decimal: expand using positional notation

Decimal to octal: use the shortcut

37O = (3*81) + (7*80)
= 24 + 7
= 31

31 / 8 = 3 R 7
3 / 8 = 0 R 3

Read from bottom
to top: 37O

16

Binary-Octal Conversion

Observation: 81 = 23

• Every 1 octal digit corresponds to 3 binary digits

Binary to octal

001010000100111101B
1 2 0 4 7 5O

Digit count in binary number
not a multiple of 3 =>
pad with zeros on left

Discard leading zeros
from binary number if
appropriate

Octal to binary

1 2 0 4 7 5O
001010000100111101B

17

Agenda

18

Number Systems (Lecture 1)

Finite representation of unsigned integers (Lecture 2)

Finite representation of signed integers (Lecture 3)

Finite representation of rational numbers (Lecture 4)

Bitwise Operations

BitwiseAND

• Similar to logical AND (&&),except it works on a bit-by-bit
manner

• Denoted by a single ampersand:&

(1001 &
0101)=
0001

Bitwise OR

• Similar to logical OR (||), except it works on a bit-by-bit
manner

• Denoted by a single pipe character:|

(1001 |
0101)=
1101

Bitwise XOR

• Exclusive OR,denoted by a carat:^

• Similar to bitwise OR, except that if both inputs are 1 or 0
then the result is 0

(1001 ^
0101)=
1100

Bitwise NOT

• Similar to logical NOT (!), except it works on a bit-by-bit
manner

• Denoted by a tilde character:~

~1001 =
0110

AND (&) Operation:
X & 0 = 0 & X = 0
X & 1 = 1 & X = X
X & X = X

OR (|) Operation:
X | 1 = 1 | X = 1
X | 0 = 0 | X = X
X | X = X

XOR (^) Operation:

X ^ 1 = 1 ^ X = ~X
X ^ 0 = 0 ^ X = X
X ^ X = 0

BitwiseOperations as Masks

X: it is an unknown binary number and can be either 0 or 1

Specify the mask you would need to isolate bit 0 of the unknown number. The result
of the operation should be 0 (0x0000) if bit 0 is 0, and non-zero if bit 0 is 1. Express it
as a 4-digit hexadecimal number.
Answer:
We know that 1 hexadecimal digit = 4 bits in binary

15… …… 3 2 1 0 Bit position
XXXX XXXX XXXX XXXX Unknown number

Operation --> ? ???? ???? ???? ???? Mask

if bit 0 is 0 0000 0000 0000 0000 zero (0x0000)
if bit 0 is 1 0000 0000 0000 0001 nonzero (0x0001)

In this case, we can use AND operation (&) and then the mask(16 bits) will be as
0000 0000 0000 0001 => 0001 in hexadecimal

Therefore, the answer is answer & as the operation and 0x0001 as the mask.

Mask Example

Specify the mask you would need to set bit 1 of the unknown number to zero. That is,
the result of this operation results in a new number, which the unknown number will be
subsequently set to. Express it as a 4-digit hexadecimal number.

Answer:
We know that 1 hexadecimal digit = 4 bits in binary

15… …… 3 2 1 0 Bit position
XXXX XXXX XXXX XXXX Unknown number

Operation --> ? ???? ???? ???? ???? Mask

XXXX XXXX XXXX XX0X

In this case, we can use AND operation (&) and then the mask(16 bits) will be as
1111 1111 1111 1101 => FFFD in hexadecimal

Therefore, the answer is & as the operation and 0xFFFD as the mask.

Mask Example

Unsigned Data Types: Java vs. C

27

Java has type
• int

• Can represent signed integers

C has type:
• signed int

• Can represent signed integers
• int

• Same as signed int
• unsigned int

• Can represent only unsigned integers

To understand C, must consider representation of both
unsigned and signed integers

Representing Unsigned Integers

28

Mathematics
• Range is 0 to ∞

Computer programming
• Range limited by computer’s word size
• Word size is n bits => range is 0 to 2n – 1
• Exceed range => overflow

Nobel computers with gcc217
• n = 32, so range is 0 to 232 – 1 (4,294,967,295)

Pretend computer
• n = 4, so range is 0 to 24 – 1 (15)

Hereafter, assume word size = 4
• All points generalize to word size = 32, word size = n

Representing Unsigned Integers

29

On pretend computer Unsigned
Integer Rep

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

Adding Unsigned Integers

Addition

Results are mod 24

7
+ 10

11
0111B

+ 1010B

1 10001B

1
3 0011B

+ 10
--

+ 1010B

13 1101B

Start at right column
Proceed leftward
Carry 1 when necessary

Beware of overflow

30

Subtracting Unsigned Integers

Subtraction

3
- 10

2
0011B

- 1010B

9 1001B

Results are mod 24

10
- 7

12
0202
1010B

- 0111B

3 0011B

Start at right column
Proceed leftward
Borrow 2 when necessary

Beware of overflow

31

Shift Left

• Move all the bits N positions to the left, subbing in N 0s
on the right

Shift Left

1001

• Move all the bits N positions to the left, subbing in N 0s
on the right

Shift Left

1001 << 2 =
100100

• Move all the bits N positions to the left, subbing in N 0s
on the right

Shift Left

• Useful as a restricted form of multiplication

• Question:how?

1001 << 2 =
100100

Shift Left as Multiplication

• Equivalent decimal operation:

234

36

• Equivalent decimal operation:

234 << 1 =
2340

Shift Left as Multiplication

37

• Equivalent decimal operation:

234 << 1 =
2340

234 << 2 =
23400

Shift Left as Multiplication

38

Multiplication

• Shifting left N positions multiplies by(base)N

• Multiplying by 2 or 4 is often necessary (shift left 1 or 2
positions,respectively)

• Often a whooole lot faster than telling the processor to
multiply

234 << 2 =
23400

39

Shift Right

• Move all the bits N positions to the right, subbing in either
N 0s or N 1s on the left

• Two different forms

Shift Right

• Move all the bits N positions to the right, subbing in either
N 0s or N (whatever the leftmost bit is)s on the left

• Two different forms
1001 >> 2 =
either 0010 or 1110

Shift Right as Division

• Question: If shifting left multiplies,what does shift right do?

• Answer: divides in a similar way, but truncates result

42

Shift Right as Division

• Question: If shifting left multiplies,what does shift right do?

• Answer: divides in a similar way, but truncates result

234

43

Shift Right as Division

• Question: If shifting left multiplies,what does shift right do?

• Answer: divides in a similar way, but truncates result

234 >> 1 =
23

44

Shifting Unsigned Integers

Results are mod 24

5 << 1 => 10

3 << 2 => 12

Bitwise right shift (>>): fill on left with zeros

What is the effect
arithmetically? (No
fair looking ahead)

Bitwise left shift (<<): fill on right with zeros

What is the effect
arithmetically? (No
fair looking ahead)

45

10 >> 1 => 5

1010B 0101B

10 >> 2 => 2

1010B 0010B

0101B 1010B

0011B 1100B

Other Operations on Unsigned Ints

Bitwise NOT (~)
• Flip each bit

~10 => 5

10
& 7
--
2

46

1010B
& 0111B

0010B

Useful for setting
selected bits to 0

1010B 0101B

Bitwise AND (&)
• Logical AND corresponding bits

Other Operations on Unsigned Ints

Bitwise OR: (|)
• Logical OR corresponding bits

Bitwise exclusive OR (^)
• Logical exclusive OR corresponding bits

10
| 1

--
11

1010B
0001B
1011B

Useful for setting
selected bits to 1

10
^ 10
--
0

47

1010B
^ 1010B

0000B

x ^ x sets
all bits to 0

The binary XOR operation will always produce a 1 output if either of its inputs is
1 and will produce a 0 output if both of its inputs are 0 or 1.

Aside: Using Bitwise Ops for Arith

Can use <<, >>, and & to do some arithmetic efficiently

x * 2y == x << y
• 3*4 = 3*22 = 3 << 2 => 12

x / 2y == x >> y
• 13/4 = 13/22 = 13 >> 2 => 3

x % 2y == x & (2y-1)
• 13%4 = 13%22 = 13&(22-1)
= 13&3 => 1

Fast way to multiply
by a power of 2

Fast way to divide
by a power of 2

Fast way to mod
by a power of 2

48

13
& 3

1101B
& 0011B

1 0001B

0011B 1100B

1101B 0011B

Two Forms of Shift Right

• Subbing in 0s makes sense

• What about subbing in the leftmost bit?

• And why is this called “arithmetic” shift right?

1100 (arithmetic)>> 1 =
1110

Answer... Sort of

• Arithmetic form is intended for numbers in two's complement

(next lecture), whereas the non-arithmetic form is intended

for unsigned numbers

Agenda

51

Number Systems (Lecture 1)

Finite representation of unsigned integers (Lecture 2)

Finite representation of signed integers (Lecture 3)

Finite representation of rational numbers (Lecture 4)

Signed Magnitude

52

Integer Rep
-7 1111
-6 1110
-5 1101
-4 1100
-3 1011
-2 1010
-1 1001
-0 1000
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Definition
High-order bit indicates sign

0 => positive
1 => negative

Remaining bits indicate magnitude

B B1101 = -101 = -5
0101B = 101B = 5

Signed Magnitude (cont.)

Integer Rep
-7 1111
-6 1110
-5 1101
-4 1100
-3 1011
-2 1010
-1 1001
-0 1000
0 0000
1 0001
2 0010
3 0011
4
5
6
7

0100
0101
0110
0111

53

Computing negative
neg(x) = flip high order bit of x

neg(0101B) = 1101B
neg(1101B) = 0101B

Pros and cons
+ easy for people to understand
+ symmetric
- two reps of zero
- one of the bit patterns is wasted.
- addition doesn't work the way we want it to.

Signed Magnitude (cont.)

54

Problem #1: "The Case of the Missing Bit Pattern":

How many possible bit patterns can be created with 4 bits?

Easy, we know that's 16. In unsigned representation, we were able to represent

16 numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15.

But with signed magnitude, we are only able to represent 15 numbers: -7, -6, -5,

-4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, and 7.

There's still 16 bit patterns, but one of them is either not being used or is

duplicating a number. That bit pattern is '1000B’.

When we interpret this pattern, we get '-0' which is both nonsensical (negative

zero? come on!) and redundant (we already have '0000B' to represent 0).

Signed Magnitude (cont.)

55

Problem #2: "Requires Special Care and Feeding": Remember we wanted to

have negative binary numbers so we could use our binary addition algorithm to

simulate binary subtraction. How does signed magnitude fare with addition? To

test it, let's try subtracting 2 from 5 by adding 5 and -2. A positive 5 would be

represented with the bit pattern '0101B' and -2 with '1010B'. Let's add these two

numbers and see what the result is:
0101

+1010

1111

Now we interpret the result as a signed magnitude number. The sign is ‘1’

(negative) and the magnitude is '7'. So the answer is a negative 7. But, wait a

minute, 5-2=3! This obviously didn't work.

Conclusion: signed magnitude doesn't work with regular binary addition algorithms.

One's Complement

Integer Rep
-7 1000
-6 1001
-5 1010
-4 1011
-3 1100
-2 1101
-1 1110
-0 1111
0 0000
1 0001
2 0010
3 0011
4
5
6
7

0100
0101
0110
0111

56

Definition
High-order bit has weight -7 (- 2n + 1)

B

0010B

1010 = (1*-7)+(0*4)+(1*2)+(0*1)
= -5
= (0*-7)+(0*4)+(1*2)+(0*1)
= 2

One's Complement (cont.)

7 0111
- two reps of zero 57

Integer Rep
-7 1000
-6 1001
-5 1010
-4 1011
-3 1100
-2 1101
-1 1110
-0 1111
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110

Computing negative
neg(x) = ~x

neg(0101) = 1010B B

Pros and cons
+ symmetric

neg(1010B) = 0101B

Computing negative (alternative)
neg(x) = 1111B - x

neg(0101) = 1111 – 0101B B B
= 1010B

neg(1010B) = 1111B – 1010B
= 0101B

Two’s Complement

35

Integer Rep
-8 1000
-7 1001
-6 1010
-5 1011
-4 1100
-3 1101
-2 1110
-1 1111
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Definition
High-order bit has weight -8 (-2n)

B

0010B

1010 = (1*-8)+(0*4)+(1*2)+(0*1)
= -6
= (0*-8)+(0*4)+(1*2)+(0*1)
= 2

Two’s Complement (cont.)

59

Integer Rep
-8 1000
-7 1001
-6 1010
-5 1011
-4 1100
-3 1101
-2 1110
-1 1111
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Computing negative
neg(x) = ~x + 1
neg(x) = onescomp(x) + 1

neg(0101B) = 1010B + 1 = 1011B
neg(1011B) = 0100B + 1 = 0101B

Pros and cons
- not symmetric
+ one rep of zero

Two’s Complement (cont.)

60

Almost all computers use two’s complement to represent
signed integers

Why?
• Arithmetic is easy
• Will become clear soon

Hereafter, assume two’s complement representation of
signed integers

Two's Complement

• Way to represent positive integers, negative integers, and zero

• If 1 is in the most significant bit (generally leftmost bit in this
class),then it is negative

Decimal toTwo's Complement

• Example: -5 decimal to binary (twos complement)

http://sandbox.mc.edu/~bennet/cs110/tc/dtotc.html

Decimal toTwo's Complement

• Example:-5 decimal to binary (twos complement)

• First, convert the magnitude to an unsigned representation

• Example:-5 decimal to binary (two's complement)

• First, convert the magnitude to an unsigned representation

5 (decimal) = 0101 (binary)

Decimal toTwo's Complement

• Then, take the bits, and negate them

Decimal toTwo's Complement

• Then, take the bits, and negate them

0101

Decimal toTwo's Complement

• Then, take the bits, and negate them

~0101 =
1010

Decimal toTwo's Complement

• Finally, add one:

Decimal toTwo's Complement

• Finally, add one:

1010

Decimal toTwo's Complement

• Finally, add one:
1010 + 1 =
1011

Decimal toTwo's Complement

• Same operation: negate the bits, and add one

Two’s Complement to Decimal

• Same operation: negate the bits, and add one

1011

Two’s Complement to Decimal

• Same operation: negate the bits, and add one

~1011 =
0100

Two’s Complement to Decimal

• Same operation: negate the bits, and add one

0100

Two’s Complement to Decimal

• Same operation: negate the bits, and add one
0100 + 1 =
0101

Two’s Complement to Decimal

• Same operation: negate the bits, and add one

0100 + 1 =
0101 =
-5

We started with
1011 - negative

Two’s Complement to Decimal

Addition

http://sandbox.mc.edu/~bennet/cs110/textbook/module3_2.html

Building UpAddition

• Question: how might we add the following, in decimal?

986
+123

?

• Question: how might we add the following, in decimal?

Building UpAddition

986
+123

?

6
+3
--
?

• Question: how might we add the following, in decimal?

6
+3
--
9

8
+2
--
?

Building UpAddition

986
+123

?

Building UpAddition

6
+3
--
9

8
+2
--
0

Carry:1

• Question: how might we add the following, in decimal?

986
+123

?

Building UpAddition

6
+3
--
9

8
+2
--
0

1
9

+1
--
?

• Question: how might we add the following, in decimal?

986
+123

?

Building UpAddition

6
+3
--
9

8
+2
--
0

1
9

+1
--
1

Carry:1

• Question: how might we add the following, in decimal?

986
+123

?

Building UpAddition

6
+3
--
9

8
+2
--
0

1
9

+1
--
1

1
+0
--
1

• Question: how might we add the following, in decimal?

986
+123

?

Core Concepts

• We have a “primitive” notion of adding single digits, along
with an idea of carrying digits

• We can build on this notion to add numbers together that
are more than one digit long

Adding Multiple Bits

• How might we add the numbers below?

011
+001

Adding Multiple Bits

• How might we add the numbers below?

0
011

+001

Adding Multiple Bits

0

• How might we add the numbers below?

10
011

+001

Adding Multiple Bits

00

• How might we add the numbers below?

110
011

+001

Adding Multiple Bits

100

• How might we add the numbers below?

0110
011

+001

Adding Multiple Bits

100

• How might we add the numbers below?

0110
011

+001

Output Carry Bit Result Bits

Another Example

111
+001

Another Example

0
111

+001

Another Example

0

10
111

+001

Another Example

00

110
111

+001

Another Example

000

1110
111

+001

Output Carry Bit Result Bits

Output Carry Bit Significance

• For unsigned numbers, it indicates if the result did not fit all
the way into the number of bits allotted

• May be an error condition for software

Signed Addition

• Question: what isthe result of the following operation?

011
+011

?

Signed Addition

• Question:what is the result of the following operation?

011
+011

0110

Overflow

• In this situation, overflow occurred: this means that both the

operands had the same sign, and the result’s sign differed

• Possibly a software error

011
+011

110

Overflow vs.Carry

• These are different ideas

• Carry is relevant to unsigned values

• Overflow is relevant to signed values

Adding Signed Integers

3
+ 3

11
0011B

+ 0011B
7

+ 1

111
0111B

+ 0001B

-8 1000B

pos + pos pos + pos (overflow)

3
+ -1

1111
0011B

+ 1111B

6 0110B

pos + neg

-3
+ -2

11
1101B

+ 1110B

-5 11011B

2 10010B

neg + neg

-6
+ -5

1 1
1010B

+ 1011B

5 10101B

neg + neg (overflow)

Subtracting Signed Integers

1
22

3 0011B 3 0011B
- 4 - 0100B + -4 + 1100B

-1 1111B -1 1111B

111
-5 1011B -5 1011
- 2 - 0010B + -2 + 1110

-7 1001B -7 11001

Perform subtraction
with borrows

Compute two’s comp
and addor

Shifting Signed Integers
Bitwise (logical/arithmetic) left shift (<<): fill on right with zeros

Bitwise arithmetic right shift: fill on left with sign bit

Results are mod 24

6 >> 1 => 3

-6 >> 1 => -3

3 << 1 => 6

-3 << 1 => -6

0011B 0110B

1101B 1010B

0110B 0011B

1010B 1101B

Shift by n =
multiplying by 2n

Shift by n = dividing by 2n

and Round-floor

Shifting Signed Integers (cont.)

Bitwise logical right shift: fill on left with zeros

Right shift (>>) could be logical or arithmetic
• Compiler designer decides
• Logical shift is ideal for unsigned binary numbers
• Arithmetic shift is ideal for signed two’s complement binary numbers

6 >> 1 => 3

-6 >> 1 => 5

0110B 0011B

1010B 0101B
?

Other Operations on Signed Ints

Bitwise NOT (~)
• Same as with unsigned ints

Bitwise AND (&)
• Same as with unsigned ints

Bitwise OR: (|)
• Same as with unsigned ints

Bitwise exclusive OR (^)
• Same as with unsigned ints

Agenda

Number Systems (Lecture 1)

Finite representation of unsigned integers (Lecture 2)

Finite representation of signed integers (Lecture 3)

Finite representation of rational numbers (Lecture 4)

Number Systems

• So far, we have studied the following integer number
systems in computer
 Unsigned numbers

 Sign/magnitude numbers

 Two’s complement numbers

• What about rational numbers?

 A rational number is one that can be expressed as the ratio of
two integers

 Infinite range and precision
 For example, 2.5, -10.04, 0.75 etc

Rational Numbers

Computer science
• Finite range and precision
• Approximate using floating point number

• Binary point “floats” across bits

• Two common notations to represent rational numbers
in computer
 Fixed-point numbers

 Floating-point numbers

Fixed-Point Numbers

• Fixed point notation has an implied binary point between the
integer and fraction bits
 The binary point is not a part of the representation but is implied
 Example:

• Fixed-point representation of 6.75 using 4 integer bits and 4 fraction bits:

• The number of integer and fraction bits must be agreed upon
by those generating and those reading the number
 There is no way of knowing the existence of the binary point except

through agreement of those people interpreting the number

01101100

0110.1100

22 + 21 + 2-1 + 2-2 = 6.75

Signed Fixed-Point Numbers

• As with whole numbers, negative fractional numbers can be represented
in two ways
 Sign/magnitude notation
 Two’s complement notation

• Example:
 -2.375 using 8 bits (4 bits each to represent integer and fractional parts)

• 2.375 = 0010 . 0110
• Sign/magnitude notation: 1010 0110
• Two’s complement notation:

1. flip all the bits: 1101 1001
2. add 1: + 1

1101 1010

• Addition and subtraction works easily in computer with 2’s complement
notation like integer addition and subtraction

Example

• Suppose that we have 8 bits to represent a number
 4 bits for integer and 4 bits for fraction

• Compute 0.75 + (-0.625)
 0.75 = 0000 1100
 0.625 = 0000 1010

 -0.625 in 2’s complement form: 1111 0110

0.75 0000 1100
+ - 0.625 1111 0110

0000 00100.125

Fixed-Point Number Systems

• Fixed-point number systems have a limitation of having a
constant number of integer and fractional bits

• Some low-end digital signal processors support fixed-point
numbers
 Example: TMS320C550x TI (Texas Instruments) DSPs: www.ti.com

Floating-Point Numbers

• Floating-point number systems circumvent the limitation of having a
constant number of integer and fractional bits
 They allow the representation of very large and very small numbers

• The binary point floats to the right of the most significant 1
 Similar to decimal scientific notation
 For example, write 27310 in scientific notation:

• Move the decimal point to the right of the most significant digit and increase the exponent:

273 = 2.73 × 102

• In general, a number is written in scientific notation as:
± M × BE

Where,
 M = mantissa
 B = base
 E = exponent
 In the example, M = 2.73, B = 10, and E = 2 (that is, +2.73 × 102)

Floating-Point Numbers

• Floating-point number representation using 32 bits
 1 sign bit
 8 exponent bits
 23 bits for the mantissa.

• The following slides show three versions of floating-
point representation with 22810 using a 32-bit
 The final version is called the IEEE 754 floating-point standard

Sign Exponent Mantissa

1 bit 8 bits 23 bits

Floating-Point Representation #1

• First, convert the decimal number to binary

 22810 = 111001002 = 1.11001 × 27

• Next, fill in each field in the 32-bit:

 The sign bit (1 bit) is positive, so 0

 The exponent (8 bits) is 7 (111)

 The mantissa (23 bits) is 1.11001

0 00000111 11 1001 0000 0000 0000 0000
Sign Exponent Mantissa

1 bit 8 bits 23 bits

/ Fraction

Floating-Point Representation #2

• You may have noticed that the first bit of the mantissa is always 1, since
the binary point floats to the right of the most significant 1

 Example: 22810 = 111001002 = 1.11001 × 27

• Thus, storing the most significant 1 (also called the implicit leading 1) is
redundant information

• We can store just the fraction parts in the 23-bit field

 Now, the leading 1 is implied

0 00000011 110 0100 0000 0000 0000 0000
Sign Exponent Fraction

1 bit 8 bits 23 bits
0 0 0 0 0 1 1 1

Mantissa /

Floating-Point Representation #3

• The exponent needs to represent both positive and negative

• The final change is to use a biased exponent

 The IEEE 754 standard uses a bias of 127

 Biased exponent = bias + exponent

• For example, an exponent of 7 is stored as 127 + 7 = 134 = 100001102

• Thus , 22810 using the IEEE 754 32-bit floating-point standard is

0 10000110
Sign Biased

Exponent
Fraction

1 bit 8 bits 23 bits
 110 0100 0000 0000 0000 0000

Most general purpose processors (including Intel and AMD processors) provide hardware
support for double-precision floating-point numbers and operations

Mantissa /

22810 = 111001002 = 1.11001 × 27

IEEE Floating Point Representation

Common finite representation: IEEE floating point
• More precisely: ISO/IEEE 754 standard

Using 32 bits (type float in C):
• 1 bit: sign (0=>positive, 1=>negative)
• 8 bits: exponent + 127
• 23 bits: binary fraction of the form 1.ddddddddddddddddddddddd

Using 64 bits (type double in C):
• 1 bit: sign (0=>positive, 1=>negative)
• 11 bits: exponent + 1023
• 52 bits: binary fraction of the form

1.dd

0 10000001 001 1000 0000 0000 0000 0000
Sign Exponent Fraction

1 bit 8 bits 23 bits

Mantissa /

Example

• Represent -5810 using the IEEE 754 floating-point standard
 First, convert the decimal number to binary

• 5810 = 1110102 = 1.1101 × 25

 Next, fill in each field in the 32-bit number

• The sign bit is negative (1)

• The 8 exponent bits are (127 + 5) = 132 = 10000100(2)

• The remaining 23 bits are the fraction bits: 11010000...000(2)

 It is 0xC2680000 in the hexadecimal form

Check this out with the result of the sample program in the slide# 3

1 10000100 110 1000 0000 0000 0000 0000
Sign Exponent Fraction

1 bit 8 bits 23 bits

Double Precision Example

• Represent -5810 using the IEEE 754 double precision
 First, convert the decimal number to binary

• 5810 = 1110102 = 1.1101 × 25

 Next, fill in each field in the 64-bit number

• The sign bit is negative (1)

• The 11 exponent bits are (1023 + 5) = 1028 = 10000000100(2)

• The remaining 52 bits are the fraction bits: 11010000...000(2)

 It is 0xC04D000000000000 in the hexadecimal form

Floating-Point Numbers: Special Cases

• The IEEE 754 standard includes special cases for numbers that are
difficult to represent, such as 0 because it lacks an implicit leading 1

Number Sign Exponent Fraction

0 X 00000000 00000000000000000000000

∞ 0 11111111 00000000000000000000000

- ∞ 1 11111111 00000000000000000000000

NaN X 11111111 non-zero

NaN is used for numbers that don’t exist, such as √-1 or log(-5)

Floating Point Example

Sign (1 bit):
• 1 => negative

Exponent (8 bits):
• 10000011B = 131
• 131 – 127 = 4

Fraction (23 bits):
• 1.10110110000000000000000B
• 1 +
(1*2-1)+(0*2-2)+(1*2-3)+(1*2-4)+(0*2-5)+(1*2-6)+(1*2-7)
= 1.7109375

Number:
• -1.7109375 * 24 = -27.375

11000001110110110000000000000000

32-bit representation

Floating Point Example

2632
1312
652
322
162
82
42
22
12
0

1
1
1
0
0
0
0
0
1

263: 100000111

0.3 * 2 0.6 0

0.6 * 2 1.2 1

0.2 * 2 0.4 0

0.4 * 2 0.8 0

0.8 * 2 1.6 1

0.6 * 2 1.2 1

0

0

1

1

0

0.3 : 01001100110011….

263.3

Stop when it gets 1.0

IEEE754 floating-point standard can’t represent
some numbers exactly

Floating Point Example

0100 0011 1000 0011 1010 0110 0110 0110

32-bit representation

1) 263.3
100000111.0100110011…

2) Scientific notation:
1.000001110100110011… * 28

Mantissa

Sign (1 bit):
• positive => 0

Exponent (8 bits):
• 127 + 8 = 135

• 135 = 10000111B

Fraction (23 bits):
• 00000111010011001100110

Binary Coded Decimal (BCD)

• Since floating-point number systems can’t represent some numbers exactly
such as 0.3, some application (calculators) use BCD (Binary coded decimal)
 BCD numbers encode each decimal digit using 4 bits with a range of 0 to 9

BCD fixed-point notation examples
1.7 = 0001 . 0111
4.9 = 0100 . 1001

• BCD is very common in electronic systems where a numeric value is to be
displayed, especially, in systems consisting solely of digital logic (not containing
a microprocessor) - Wiki

Decimal BCD Digit

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

6.75 = 0110.01110101

Examples

1- Convert Decimal to Floating Point (IEEE 754)
https://www.youtube.com/watch?v=8afbTaA-gOQ

2- Convert Floating Point (IEEE 754) to Decimal
https://www.youtube.com/watch?v=LXF-wcoeT0o

Converting Between Decimal and Binary
Floating-Point Numbers

https://mebrahimii.github.io/comp122-summer2021/lecture/week_2/floating_point_interconversions.html

Summary

The binary, hexadecimal, and octal number systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers

Essential for proper understanding of
• C primitive data types
• Assembly language
• Machine language

133

Backup Slides

Floating-Point Numbers: Rounding

• Arithmetic results that fall outside of the available precision
must round to a neighboring number

• Rounding modes
 Round down
 Round up
 Round toward zero
 Round to nearest

• Example
 Round 1.100101 (1.578125) so that it uses only 3 fraction bits

• Round down: 1.100
• Round up: 1.101
• Round toward zero: 1.100
• Round to nearest: 1.101

 1.625 is closer to 1.578125 than 1.5 is

134

Floating-Point Addition with the Same Sign

• Addition with floating-point numbers is not as simple as addition
with 2’s complement numbers

• The steps for adding floating-point numbers with the same sign
are as follows
1. Extract exponent and fraction bits
2. Prepend leading 1 to form mantissa
3. Compare exponents
4. Shift smaller mantissa if necessary
5. Add mantissas
6. Normalize mantissa and adjust exponent if necessary
7. Round result
8. Assemble exponent and fraction back into floating-point format

135

Floating-Point Addition Example

136

Add the following floating-point numbers:

1.5 + 3.25

1.5(10) = 1.1(2) x 20

3.25(10) = 11.01(2) = 1.101(2) x 21

1.1(10) = 0x3FC00000 in IEEE 754 single precision
3.25(10) = 0x40500000 in IEEE 754 single precision

Floating-Point Addition Example

137

1. Extract exponent and fraction bits

For first number (N1): S = 0, E = 127, F = .1
For second number (N2): S = 0, E = 128, F = .101

2. Prepend leading 1 to form mantissa
N1: 1.1
N2: 1.101

0 01111111 100 0000 0000 0000 0000 0000
Sign Exponent Fraction

1 bit 8 bits 23 bits

0 10000000 101 0000 0000 0000 0000 0000

1 bit 8 bits 23 bits

Sign Exponent Fraction

Floating-Point Addition Example

138

3. Compare exponents
127 – 128 = -1, so shift N1 right by 1 bit

4. Shift smaller mantissa if necessary
shift N1’s mantissa: 1.1 >> 1 = 0.11 (× 21)

5. Add mantissas
0.11 × 21

+ 1.101 × 21

10.011 × 21

Floating-Point Addition Example

139

6. Normalize mantissa and adjust exponent if necessary
10.011 × 21 = 1.0011 × 22

7. Round result
No need (fits in 23 bits)

8. Assemble exponent and fraction back into floating-point
format

S = 0, E = 2 + 127 = 129 = 100000012, F = 001100..

4.75(10) = 0x40980000 in the hexadecimal form

0 10000001 001 1000 0000 0000 0000 0000
Sign Exponent Fraction

1 bit 8 bits 23 bits

